AUDIO

Henning Schulzrinne Dept. of Computer Science Columbia University Spring 2015

Key objectives

- How do humans generate and process sound?
- How does digital sound work?
- How fast do I have to sample audio?
- How can we represent time domain signals in the frequency domain? Why?
- How do audio codecs work?
- How do we measure their quality?
- What is the impact of networks (packet loss) on audio quality?

Human speech

Mark Handley

Human speech

- voiced sounds: vocal cords vibrate (e.g.,A4 [above middle C] = 440 Hz
 - vowels (a, e, i, o, u, ...)
 - determines pitch
- unvoiced sounds:
 - fricatives (f, s)
 - plosives (p, d)
- filtered by vocal tract
- changes slowly (10 to 100 ms)
- air volume \rightarrow loudness (dB)

Human hearing

Human hearing

Human hearing & age

Digital sound

Analog-to-digital conversion

- Sample value of digital signal at $f_s (8 96 \text{ kHz})$
- Digitize into 2^B discrete values (8-24)

Sample & hold

Mark Handley

Direct-Stream Digital

Delta-Sigma coding

How fast to sample?

- Harry Nyquist (1928) & Claude Shannon (1949)
 - no loss of information → sampling frequency ≥ 2 * maximum signal frequency
- More recent: compressed sensing
 - works for sparse signals in some space

Audio coding

application	frequency	sampling	quantization
telephone	300-3,400 Hz	8 kHz	12-13
wide-band	50-7,000 Hz	16 kHz	14-15
high quality	30-15,000 Hz	32 kHz	16 CD
	20-20,000 Hz	44.1 kHz	16
	10-22,000 Hz	48 kHz	≤ 24
			DAT

24 bit, 44.1/48 kHz

Complete A/D

Aliasing distortion

Mark Handley

Quantization

- CDs: 16 bit \rightarrow lots of bits
- Professional audio: 24 bits (or more)
- 8-bit linear has poor quality (noise)
- Ear has logarithmic sensitivity → "companding"
 - used for Dolby tape decks
 - quantization noise ~ signal level

Quantization noise

Fourier transform

- Fourier transform: time series \rightarrow series of frequencies
 - complex frequencies: amplitude & phasess
- Inverse Fourier transform: frequencies (amplitude & phase) → time series
- Note: also works for other basis functions

Fourier series

- Express periodic function as sum of sines and cosines of different amplitudes
 - iff band-limited, finite sum
- Time domain → frequency domain
 - no information loss
 - and no compression
 - but for periodic (or time limited) signals
- http://www.westga.edu/~jhasbun/ osp/Fourier.htm

Fourier series of a periodic function

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$$

continuous time, discrete frequencies

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$$

Fourier transform

forward transform (time x, real frequency k)

continuous time, continuous frequencies

$$e^{xi} = cos(x) + isin(x)$$

Discrete Fourier transform

 For sampled functions, continuous FT not very useful → DFT

$$F_n = \sum_{k=0}^{N-1} f_k e^{-2\pi i n k/N}$$

complex numbers → complex coefficients

$$f_{k} = \frac{1}{N} \sum_{n=0}^{N-1} F_{n} e^{2\pi i n k/N}$$

DFT example

- Interpreting a DFT can be slightly difficult, because the DFT of real data includes complex numbers.
 - The magnitude of the complex number for a DFT component is the power at that frequency.
 - The phase θ of the waveform can be determined from the relative values of the real and imaginary coefficients.
 - Also both positive and "negative" frequencies show up.

DFT example

DFT example

Fast Fourier Transform (FFT)

 Discrete Fourier Transform would normally require O(n2) time to process for n samples:

- Don't usually calculate it this way in practice.
 - Fast Fourier Transform takes *O*(*n log*(*n*)) *time*.
 - Most common algorithm is the Cooley-Tukey Algorithm.

Fourier Cosine Transform

Split function into odd and even parts:

· Re-express FT: $F(k) = \int E(x) \cos(2\pi kx) dx - i \int O(x) \sin(2\pi kx) dx$

 $f(x) = \frac{1}{2}[f(x) + f(-x)] + \frac{1}{2}[f(x) - f(-x)] = E(x) + O(x)$

Only real numbers from an even function → DFT becomes DCT

DCT (for JPEG)

other versions exist (e.g., for MP3, with overlap)

Why do we use DCT for multimedia?

- For audio:
 - Human ear has different dynamic range for different frequencies.
 - Transform to from time domain to frequency domain, and quantize different frequencies differently.
- For images and video:
 - Human eye is less sensitive to fine detail.
 - Transform from spatial domain to frequency domain, and quantize high frequencies more coarsely (or not at all)
 - Has the effect of slightly blurring the image may not be perceptible if done right.

Why use DCT/DFT?

- Some tasks easier in frequency domain
 - e.g., graphic equalizer, convolution
- Human hearing is logarithmic in frequency (\rightarrow octaves)
- Masking effects (see MP3)

Example: DCT for image

µ-law encoding

Companding

Wikipedia

µ-law & A-law

A-law

$$\begin{split} F(x) &= \frac{A|x|}{\ln(1+A)} & 0 \leq |x| < \frac{1}{A} \\ F(x) &= \frac{sgn(x)ln(1+A|x|))}{\ln(1+A)} & \frac{1}{A} \leq |x| \leq 1 \\ A &= 87.7 \text{ in Europe} \end{split}$$

Differential codec

(Adaptive) Differential Pulse Code Modulation

ADPCM

- Makes a simple prediction of the next sample, based on weighted previous n samples.
- For G.721, previous 8 weighted samples are added to make the prediction.
- Lossy coding of the difference between the actual sample and the prediction.
 - Difference is quantized into 4 bits \Rightarrow 32Kb/s sent.
 - Quantization levels are adaptive, based on the content of the audio.
 - Receiver runs same prediction algorithm and adaptive quantization levels to reconstruct speech.

Model-based coding

- PCM, DPCM and ADPCM directly code the received audio signal.
- An alternative approach is to build a *parameterized model* of the sound source (i.e., human voice).
- For each time slice (e.g., 20ms):
 - Analyze the audio signal to determine how the signal was produced.
 - Determine the model parameters that fit.
 - Send the model parameters.
 - At the receiver, synthesize the voice from the model and received parameters.

Speech formation

Linear predictive codec

- Earliest low-rate codec (1960s)
- LPC10 at 2.4 kb/s
 - sampling rate 8 kHz
 - frame length 180 samples (22.5 ms)
 - linear predictive filter (10 coefficients = 42 bits)
 - pitch and voicing (7 bits)
 - gain information (5 bits)

Linear predictive codec

linear (IIR) filter infinite impulse response (IIR) vs. finite impulse response

Code Excited Linear Prediction (CELP)

- Goal is to efficiently encode the residue signal, improving speech quality over LPC, but without increasing the bit rate too much.
- CELP codecs use a codebook of typical residue values.
 (→ vector quantization)
- Analyzer compares residue to codebook values.
 - Chooses value which is closest.
 - Sends that value.
 - Receiver looks up the code in its codebook, retrieves the residue, and uses this to excite the LPC formant filter.

CELP (2)

- Problem is that codebook would require different residue values for every possible voice pitch.
 - Codebook search would be slow, and code would require a lot of bits to send.
 - One solution is to have two codebooks.
 - One fixed by codec designers, just large enough to represent one pitch period of residue.
 - One dynamically filled in with copies of the previous residue delayed by various amounts (delay provides the pitch)
 - CELP algorithm using these techniques can provide pretty good quality at 4.8Kb/s.

Enhanced LPC usage

- GSM (Groupe Speciale Mobile)
 - Residual Pulse Excited LPC
 - 13 kb/s
- LD-CELP
 - Low-delay Code-Excited Linear Prediction (G.728)
 - 16 kb/s
- CS-ACELP
 - Conjugate Structure Algebraic CELP (G.729)
 - 8 kb/s
- MP-MLQ
 - Multi-Pulse Maximum Likelihood Quantization (G.723.1)
 - 6.3 kb/s

Distortion metrics

- error (noise) r(n) = x(n) y(n)
- variancesox2,oy2,or2
- power for signal with pdf p(x) and range $-V \dots + V$

SNR = 6.02N - 1.73 for uniform quantizer with N bits

Distortion measures

- SNR not a good measure of perceptual quality
- segmental SNR: time-averaged blocks (say, 16 ms)
- frequency weighting
- subjective measures:
 - A-B preference
 - subjective SNR: comparison with additive noise
 - MOS (mean opinion score of 1-5), DRT, DAM, ...

Quality metrics

- speech vs. music
- communication vs. toll quality

score	MOS	DMOS	understanding
5	excellent	inaudible	no effort
4	good, toll quality	audible, not annoying	no appreciable effort
3	fair	slightly annoying	moderate effort
2	poor	annoying	considerable effort
1	bad	very annoying	no meaning

Subjective quality metrics

- Test phrases (ITU P.800)
 - You will have to be very quiet.
 - There was nothing to be seen.
 - They worshipped wooden idols.
 - I want a minute with the inspector.
 - Did he need any money?
- Diagnostic rhyme test (DRT)
 - 96 pairs like dune vs. tune
 - 90% right \rightarrow toll quality

Objective quality metrics

- approximate human perception of noise and other distortions
- distortion due to encoding and packet loss (gaps, interpolation of decoder)
- examples: PSQM (P.861), PESQ (P.862), MNB, EMBSD compare reference signal to distorted signal
- either generate MOS scores or distance metrics
- much cheaper than subjective tests
- only for telephone-quality audio so far

Objective vs. subjective quality

Common narrowband audio codecs

Codec	rate (kb/ s)	delay (ms)	multi-rate	em- bedd ed	VBR	bit-robust/ PLC	remarks
iLBC	15.2 13.3	20 30				/X	quality higher than G.729A no licensing
Speex	2.152 4.6	30	Х	X	X	/X	no licensing
AMR-NB	4.751 2.2	20	Х			X/X	3G wireless
G.729	8	15				X/X	TDMA wireless
GSM-FR	13	20					GSM wireless (Cingular)
GSM-EFR	12.2	20				X/X	2.5G
G.728	16 12.8	2.5				X/X	H.320 (ISDN videconferencing)
G.723.1	5.3 6.3	37.5 37.5				X/	H.323, videoconferences

Common wideband audio codecs

Codec	rate (kb/ s)	delay (ms)	multi-rate	em- bedd ed	VBR	bit-robust/ PLC	remarks
Speex	4— 44.4	34	Х	Х	X	/X	no licensing
AMR-WB	6.6— 23.85	20	Х			X/X	3G wireless
G.722	48, 56, 64	0.12 5 (1.5)				X/	2 sub-bands now dated

http://www.voiceage.com/listeningroom.php

MOS vs. packet loss

iLBC – MOS behavior with packet loss

The tests were performed by Dynstat, Inc., an independent test laboratory. Score system range: 1 = bad, 2 = poor, 3 = fair, 4 = good, 5 = excellent

Courtesy of C GLOBAL IP SOUND

Recent audio codecs

- iLBC: optimized for high packet loss rates (frames encoded independently)
- AMR-NB
 - 3G wireless codec
 - 4.75-12.2 kb/s
 - 20 ms coding delay

Opus audio codex (RFC 6716)

- interactive speech & (stereo) music
- 6 kb/s ... 510 kb/s (music)
- frame size: 2.5 ms ... 60 ms
- Linear prediction + MDCT
- SILK
 - Developed by Skype
 - Based on Linear Prediction
 - Efficient for voice
 - · Up to 8 kHz audio bandwidth

- CELT
 - Developed by Xiph.Org
 - Based on MDCT
 - Good for universal audio/music

Comparison

Audio traffic models

- talkspurt: *typically*, constant bit rate:
 - one packet every 20. . . 100 ms 🖛 mean: 1.67 s
- silence period: usually none
 - (maybe transmit background noise value) = 1.34 s
- for telephone conversation, both roughly *exponentially distributed*
- double talk for "hand-off"
- may vary between conversations
 - monly in aggregate

Sound localization

- Human ear uses 3 metrics for stereo localization:
 - intensity
 - time of arrival (TOA) 7 μs
 - direction filtering and spectral shaping by outer ear
- For shorter wavelengths (4 20 kHz), head casts an acoustical shadow giving rise to a lower sound level at the ear farthest from the sound sources
- At long wavelength (20 Hz 1 KHz) the, head is very small compared to wavelengths
 - In this case localization is based on perceived Interaural Time Differences (ITD)

Audio samples

- http://www.cs.columbia.edu/~hgs/audio/codecs.html
- Opus: http://opus-codec.org/examples/
 - both narrowband and wideband